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Introduction:
The advent of metagenomic sequencing has led
to significant advancements in our
understanding of the microbiome in a wide
variety of contexts, from the human body1 to
farm animals2,3, soil, and marine environments4.
Each unique environment provides its own set of
challenges in accurate microbial identification,
including low microbial biomass in ocean
samples, PCR inhibitors in soil samples, and high
host DNA in certain human and animal samples.
Sequencing of the 16S rRNA gene has been a
popular and low-cost way to identify microbes
in these samples. However, this method is
limited by PCR primer and amplification bias
along with unreliable identification below the
genus level5. 16S rRNA gene sequencing studies
that use primer sets targeting different variable
regions cannot be compared directly as
different regions selectively detect different
bacterial taxa6. Further, relative abundance
measures are inaccurate due to variation in the
number of 16S rRNA gene operons present
within differing bacterial species7.

Whole genome shotgun sequencing WGS
addresses the amplification, primer bias, and
relative quantification issues by avoiding
amplification altogether and sequencing the
entire bacterial genome. Here, unique,
single-copy marker gene sequences or
reference genome sequences can be used to
identify and quantify bacteria present within a
sample more accurately. Because WGS relies on
marker genes or alignment to a reference, it is
possible to accurately identify microorganisms
at the species or even strain taxonomic levels.
However, there is wide variation in the accuracy

of computational tools developed to perform
these microbial identifications. Challenges faced
in WGS methods include the requirement to
account for variations in genetic diversity within
species (i.e. some species are very diverse,
whereas others are genetically uniform), mobile
elements that are shared among species, the
quality of reference genomes used, and the
divergence of strains found in nature from the
reference genomes that are used for
identification. Here, we perform a
benchmarking study to evaluate the
performance of CosmosID HUB to five other
publicly available taxonomic classification
algorithms Centrifuge11, Metaphlan312,
Kraken2_Bracken13, mOTUs229 and Metalign30.
These publicly available taxonomic classification
algorithms are known for its high accuracy and
precision when compared to other publicly
available methods based on previous
benchmarking evaluations8 10.An ideal
metagenomics classifier will properly identify a
large number of microorganisms while
displaying a small number of false positives at
all taxonomic levels. For this study, we used
publicly available benchmarking datasets from
CAMI2 Mouse Gut Dataset)27 and McIntyre et al
2017 benchmarking paper28, which consisted of
mock communities of known compositions, to
perform these comparisons.

Importance of Strain Level Resolution
As metagenomics is increasingly becoming a
method of choice across multi-disciplinary
applications, the importance of sub-species and
strain level variation is becoming ever more
apparent.14 23 For example, specific strains of
Streptococcus mutans produce hemorrhagic
damage in the murine brain and other tissues18,
whereas other strains are risk factors for
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ulcerative colitis.17 Likewise, different strains of
the protozoan parasite Toxoplasma gondii
manifest diverse pathologies and elicit altered
host responses19. Particular variants of
Staphylococcus epidermidis15 and
Staphylococcus aureus16 affect virulence and
biofilm formation. Certain strains of
Bifidobacterium longum, but not others, protect
against pathogens like Escherichia coli, and still
others elicit differential immunomodulatory
properties.14 Similarly, strain-specific
immunomodulatory effects are seen for
Propionibacterium freudenreichii21 and for
another probiotic agent, Lactobacillus casei,
variants derived from different ecological niches
vary in their ability to bind foodborne
carcinogens.22 The importance of strain
resolution is much more apparent when
assigning attribution, as exemplified in
outbreaks of nosocomial infections such as
Legionella pneumophila23 24 and Klebsiella
pneumoniae.25 These examples serve to
underscore why sub-species and strain level
identification is so crucial to our understanding
of microbial symbiosis and dysbiosis, and thus
demonstrate the power of CosmosID HUB
metagenomics in defining the microbiome
composition at a finer taxonomic resolution –
critical information needed in microbiome
research, epidemiological studies, microbial
forensics, and outbreak investigations.

Evaluation of the CosmosID HUB Taxonomic
Profiler:

In this study, we compared the performance of
the CosmosID HUB taxonomic profiling
algorithm CosmosID HUB , to that of
Centrifuge11, Metaphlan312, Kraken2_Bracken13,
mOTUs229 and Metalign30

To evaluate the performance of these tools, we
used datasets of known microbial composition
from CAMI2 and McIntyre et al 2017
benchmarking papers respectively to determine
true positives, false positives, and false
negatives from each of the pipelines. While
tools can produce either very aggressive or
highly conservative predictions of community
composition, to be reliably used in
multi-disciplinary microbiome applications it is
critical that overall classification accuracy and
detection resolution of a tool maintain low rates
of false positives and false negatives. Therefore,
we evaluated the recall or sensitivity of the
results (fraction of species actually present in
the metagenomes that are correctly detected)
and the precision (fraction of species identified
that were actually included in the mock
community). Since there is often a trade-off
between precision and sensitivity, we also
calculated the F1 score, which is the harmonic
mean of sensitivity and precision which helps to
evaluate both metrics in one score. In figure 1,
the performance of the evaluated tools is
compared at different taxonomic levels.
CosmosID HUB had the highest F1 score,
outperforming the other tools at both species
and strain levels. On recall at species level
Figure 2 , Kraken2_Bracken and Centrifuge

outperformed CosmosID HUB for the McIntyre
et al 2017 benchmarking dataset, but at the cost
of a very high number of false positives Figure
5 . This is reflected in the precision metric
Figure 3 , where both Kraken2_Bracken and

Centrifuge performed poorly. Similarly,
Metaphlan3 performed better on precision but
at the cost of recall. Since CosmosID HUB’s
performance across precision and recall was
similar, the F1 score clearly reflects
CosmosID HUB’s superior performance in
correctly identifying the right taxa in the dataset
while keeping the false positives low. Lastly, at
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strain level resolution, CosmosID HUB was
clearly superior and outperformed
Kraken2_Bracken across F1 score, precision,
and recall. Centrifuge, Metaphlan3 Metalign and
mOTUs2 were unable to make strain-level calls.

The public tools that are used in this evaluation
fall into two different categories; 1 DNA to DNA
based methods Kraken2_Bracken, Centrifuge,
and Metalign) that compares sequencing reads
with an exhaustive collection of whole
prokaryotic genomes. 2 DNA to marker gene
based methods Metaphlan3 and mOTUs2 that
query only specific gene families or clade
specific biomarkers in their reference databases
to the sequencing reads. Being able to compare
the sequencing reads to the entire genome
allows a unique advantage of discriminating
among different strains within a certain species.
However, it is extremely challenging to carry out
strain level analysis primarily because of short
reads mapping to multiple genomes due to
either local or global homology between
different species and within species as well.
That’s one of the primary reasons why only
kraken2_Bracken was able to go down to strain
level whereas the rest of DNA to DNA methods
Centrifuge and Metalign) were unable to. For

DNA to marker gene based methods, they are
unable to go down to strain level resolution
since their database is structured in a manner
that consists of specific marker genes per
clade. Furthermore, in recent years, the authors
of Metaphlan3 have developed a companion
tool called StrainPhlAn12 which utilizes the
marker gene sequences in Metaphlan3
database and analyzes the variants within these
markers to genotype the strains of each
species. However StrainPhlAn is limited to
genotyping only the most abundant species and
the identification of only the most abundant
strain per species in a community, since

detecting multiple strains per species requires
much greater depth (well above 10X .
CosmosID HUB’s unique approach to taxonomic
profiling allows it to take full advantage of the
entire genome of prokaryotes as well as focus
on unique signatures/biomarkers per strain to
accurately and precisely discriminate between
different strains even at lower coverage than
10X.

Figure 1 F1 Scores at the Species and Strain Levels. F1 scores
were calculated for data analyzed using Centrifuge,
CosmosID HUB, Kraken2_Bracken, Metalign, Metaphlan3 and
mOTUs2 at the A species, and B strain levels. CosmosID HUB
outperforms all the other pipelines at all taxonomic levels.
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Figure 2 Sensitivity Scores at the Species, and Strain Levels.
Sensitivity was calculated at the A species, and B strain levels.
CosmosID HUB has the highest sensitivity and second highest
sensitivity at species level for CAMI2 Mouse Gut and McIntyre et
al 2017 datasets respectively. At strain level, CosmosID HUB has
higher sensitivity compared to Kraken2_Bracken

Figure 3 Precision Scores at the Species, and Strain Levels.
Precision was calculated for all four pipelines at the A species,
and B strain levels. Only Metaphlan3 barely outperforms
CosmosID HUB here.

Conclusion and Future Direction:
Overall, at species and strain levels,
CosmosID HUB performs better than
Centrifuge, Kraken2_Bracken, Metaphlan3,
Metalign and mOTUs2 across all evaluation
metrics and particularly on the combined F1
score (the harmonic mean of sensitivity and
precision). It’s important to note here that,
except Kraken2_Bracken, all the other remaining
tools are unable to identify taxa to the strain
level. The primary reason why most of the
taxonomic profilers are unable to go down to
strain level is because of short reads mapping
to multiple genomes due to either local or global
homology within the same species and different
species as well. CosmosID HUB’s unique ability
to differentiate between core and shared
biomarkers among different prokaryotic
genomes allows it to discriminate among strains
of the same species accurately and precisely.

As the field of microbial genomics is advancing
rapidly, we are actively working on R&D projects
and will have some exciting new updates
coming to CosmosID HUB in the coming
months. As sequencing is getting cheaper, we
are getting exposed to a huge volume of
sequencing data from different specimen types
which gives us a great opportunity to
understand the complexities and nuances with
each communities/ecological niches individually.
Using the huge collection of data available in
the public domain for different specimen types,
our R&D team is working on creating an
advanced specimen type specific filters to
further increase our accuracy and precision
across the entire spectrum of microbiome
niches starting from high complexity stool and
soil specimens to low complexity vaginal and
clinical specimens. Furthermore, with the rapid
advancements in Long-Read sequencing
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technology both in terms of cost and error rate,
we are also actively working on a dedicated
pipeline to support both long reads
classification and MAGs/Genome
Reconstruction which will allow us to unravel the
microbial complexity with the highest resolution
and precision ever! Lastly, in this age of modern
high throughput “omics'' technologies ranging
from metagenomics, metatranscriptomics to
metaproteomics, metabolomics, CosmosID HUB
is dedicated to develop a unifying and
comprehensive analysis platform where you can
combine and aggregate all these data types
with its associated clinical and experimental
metadata and turn them into actionable insights
for your relevant translational and basic science
research. Few highlights of this application will
involve slicing and dicing the Omics data with
Multi-Omics approach using artificial
intelligence, machine learning, advanced
statistical models, and co-occurrence networks
etcetera."

How to Cite Us and Algorithm Appendix:
Please refer to our Literature web page
(https://www.cosmosid.com/literature/) to cite
the previous peer-reviewed publications that
have used the CosmosID HUB Taxonomic
Profiling algorithm for their microbiome related
research.

The CosmosID HUB taxonomic profiling
algorithm has two separable comparators: the
first consists of a pre-computation phase for the
reference database and a per-sample
computation. The input to the pre-computation
phase is a comprehensive curated collection of
reference microbial genomes and its output is a
phylogeny tree, together with sets of variable
length k-mer fingerprints (biomarkers) that are

uniquely identified with distinct nodes, branches
and leaves of the tree.

The second per-sample, computational phase
searches the hundreds of millions of short
sequence reads or contigs from draft assembly
against the k-mer fingerprint sets. The resulting
statistics are analyzed to give fine-grain
composition and relative abundance estimates.
The second comparator uses edit
distance-scoring techniques to compare a
target genome with a reference set. Overall
classification precision is maintained through
aggregation statistics. Enhanced detection
specificity is achieved by running the
comparators in sequence.

The first comparator finds reads in which there
is an exact match with a k-mer uniquely
identified with a reference genome; the second
comparator then statistically scores the entire
read against the reference to verify that the
read is indeed uniquely identified with that
reference. High-performance bioinformatics
enables CosmosID to deliver speed and
accuracy in microbial identification. The
omprehensive curation collection of reference
microbial genomes structured in a unique
tree-like database structure provide extremely
fine resolution in identification, discrimination of
pathogens from ‘near-neighbours’, and accurate
measurement of relative abundance. The
user-friendly and secure cloud interface offers
simplicity in operation, ease of use (without
requiring bioinformatics skills), built-in
multivariate comparative analysis and advanced
statistical analysis modules to allow users to
gain informative insights from their
metagenomics datasets.
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Evaluation Methods:
Dataset Sources
Publicly available metagenomics benchmarking
datasets from CAMI227

(https://repository.publisso.de/resource/frl:6421
672) and McIntyre et al 2017 paper28 which
consisted of mock communities of known
compositions were used for this study

Sample Processing Through Each Pipeline
The dataset has been ran through Centrifuge11,
Metaphlan312, Metalign30, mOTUs229,
Kraken2_Bracken13 and ComosID_HUB
Microbiome (https://app.cosmosid.com) with
default databases and parameters.

Result files were automatically grouped by
connecting the ground truth files to the
corresponding output files from Centrifuge,
Metaphlan3, Metalign, mOTUs2,
Kraken2_Bracken and CosmosID HUB
Microbiome. The ground truth files in tsv format
provided the NCBI Taxonomy IDs for species,
and strain level per call. The result files were
then parsed into python dictionaries and sets
accordingly for downstream use.

Downloading NCBI Taxonomy Browser
Database
NCBI Taxonomy Browser Database files were
downloaded using wget through NCBI’s File
Transfer Protocol FTP site. Nodes.dmp was
parsed into a python dictionary to allow quick
identification of Taxonomy Rank given an NCBI
Taxonomy ID.

Defining and Calculating Base Statistics
Python 2.7 set operations are noncommutative
and were leveraged in the calculation of base
statistics. Our base statistics are True Positives,
False Positives, True Negatives, False Negatives
are defined as follows:

True Positive TP - For a given tool, a call is a
true positive if a corresponding entry is in the
ground truth. True positives were calculated by
taking the size of a resultant set. The resultant
set was calculated through the intersection of a
truth and result set of NCBI Taxonomy IDs.

False Positive FP - For a given tool, a call is a
false positive if a corresponding entry is not in
the ground truth. False positives were
calculated by taking the size of a resultant set.
The false positives were found by calculating
the set difference of the result set and truth set.

False Negative FN - For a given tool, a false
negative exists if no call is made for a
corresponding entry in the ground truth. False
negatives were calculated by taking the size of
a resultant set. The false negatives were found
by calculating the set difference of the truth set
and result set.

True Negative TN - True Negatives were
calculated by subtracting the calls made TP +
FP from the total number of possible calls for a
tool and taxonomy rank being evaluated. The
total number of possible calls was calculated by
parsing the DB files for a given tool and use of
the Taxonomy browser dictionary where
appropriate.

Supplementary Statistics
The calculation of our supplementary statistics
were dependent on base statistic values.
Our supplementary statistics were F1,
Sensitivity, and Precision were calculated with
the following formulas:

Sensitivity: TPR TP/ TP FN
Precision: PPV TP/ TP FP
F1Score: F1 2TP/ 2TP FP FN
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Supplementary Section:

The remaining 3 figures and its associated text
will be part of the supplementary section after
References.

Figure 4 True Positive Counts for all Pipelines at the Species
and Strain Level. True positive TP counts were calculated at the
A species, and B strain level. Though not always the highest,

the TP counts for the CosmosID HUB are consistently high.

Figure 5 False Positive Counts for all Pipelines at the Species
and Strain Levels. False positive FP counts were calculated at
the A species, and B strain levels. CosmosID HUB has
consistently very low rates of FPs at all taxonomic levels.

Figure 6 False Negative Counts for all Pipelines at Species, and
Strain Levels. False negative FN counts were calculated at the
A species, and B strain levels. CosmosID HUB maintains low FN

counts across all taxonomic levels.
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At the species level, all four pipelines have
similar true positive TP counts Figure 4 at
each taxonomic level with Metalign having the
highest TPs. At the strain level, CosmosID HUB
has the highest TPs, highlighting it’s superiority
in making strain level classifications. In terms of
false positive FP counts, Kraken2_Bracken has
the highest false positive FP counts Figure 5
at both species and strain level. Furthermore,
CosmosID HUB, as well as Metaphlan3, have
close to zero FP counts at all taxonomic levels.
Lastly, for false negatives counts FN ,
CosmosID HUB had the lowest number of FNs
Figure 6 at all taxonomic levels across both

benchmarking datasets.
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